Introduction to String Theory

Humboldt-Universität zu Berlin Dr. Emanuel Malek

Exercise Sheet 1

1 Consider a coordinate change

$$x^{\mu} \longrightarrow x^{\prime\mu}$$
 (1.1)

Recall that the components of tensors transform in a well-defined way under the coordinate change (1.1). For example, the components of a (1,1) tensor T^{μ}_{ν} transform under (1.1) as

$$T^{\mu}{}_{\nu} \longrightarrow T'^{\mu}{}_{\nu} = \frac{\partial x'^{\mu}}{\partial x^{\rho}} \frac{\partial x^{\sigma}}{\partial x'^{\nu}} T^{\rho}{}_{\sigma}.$$
 (1.2)

Similarly, the components of a (1,1) tensor density \tilde{T}^{μ}_{ν} of weight w transforms under (1.1) as

$$\tilde{T}^{\mu}{}_{\nu} \longrightarrow \tilde{T}'^{\mu}{}_{\nu} = |J|^{w} \frac{\partial x'^{\mu}}{\partial x^{\rho}} \frac{\partial x^{\sigma}}{\partial x'^{\nu}} T^{\rho}{}_{\sigma}, \qquad (1.3)$$

where $J = \det\left(\frac{\partial x^{\mu}}{\partial x'^{\nu}}\right)$ is the Jacobian of the coordinate change (1.1).

- (a) Given a (2,0) tensor $S_{\mu\nu}$, show that $(\det S_{\mu\nu})^{1/2}$ is a scalar density of weight 1.
- (b) Consider now tensor and tensor density fields, i.e. $T^{\mu}_{\nu}(x)$, etc. The transformation (1.1) can be expanded infinitesimally as

$$x'^{\mu} = x^{\mu} - \epsilon^{\mu}(x) + \dots \tag{1.4}$$

Show the following infinitesimal variations for a scalar fields $\Phi(x)$, Lorentzian metric $g_{\mu\nu}(x)$ and its associated density $(-\det g(x))^{1/2}$:

$$\delta \Phi = \epsilon^{\mu} \partial_{\mu} \Phi ,$$

$$\delta g_{\mu\nu} = \epsilon^{\gamma} \partial_{\gamma} g_{\mu\nu} + (\partial_{\mu} \epsilon^{\gamma}) g_{\gamma\nu} + (\partial_{\nu} \epsilon^{\gamma}) g_{\mu\gamma} = \nabla_{\mu} \epsilon_{\nu} + \nabla_{\nu} \epsilon_{\mu} ,$$

$$\delta (-\det q)^{1/2} = \partial_{\gamma} (\epsilon^{\gamma} (-\det q)^{1/2}) .$$
(1.5)

The second equality of the second line of (1.5) uses the torsion-free metric-compatible connection ∇_{μ} .

Hint: A scalar field is defined via $\Phi'(x') = \Phi(x)$ and $\delta\Phi$ in (1.5) is defined as $\delta\Phi(x) \equiv \Phi'(x) - \Phi(x)$ and similarly for the other fields in (1.5).

2 Consider a submanifold H of M defined by the embedding $\mathcal{Y}: H \hookrightarrow M$. A Riemannian metric g on M then induces a pull-back metric $h = \mathcal{Y}^*g$ on H, explicitly given by

$$ds^2 = d\mathcal{Y}^a \, d\mathcal{Y}^b \, g_{ab} \,, \tag{2.1}$$

where $a, b = 1, ..., \dim M$, and $d\mathcal{Y}^a$ denotes the exterior derivative of \mathcal{Y}^a on H. In local coordinates σ^{α} , $\alpha = 1, ..., \dim H$, on H, these are explicitly given by

$$d\mathcal{Y}^a = \frac{\partial \mathcal{Y}^a}{\partial \sigma^\alpha} \, d\sigma^\alpha \,. \tag{2.2}$$

Consider the unit-radius n-sphere $S^n \subset \mathbb{R}^{n+1}$ with the embedding

$$\mathcal{Y}: S^n \hookrightarrow \mathbb{R}^{n+1} \,, \tag{2.3}$$

and where \mathbb{R}^{n+1} is endowed with the flat Riemannian metric $g_{ab} = \delta_{ab}$, such that the embedding satisfies $\mathcal{Y}^a \mathcal{Y}^b \delta_{ab} = 1$.

(a) Compute the pull-back metric (2.1) for S^2 using spherical coordinates

$$\mathcal{Y}^a = (\cos\phi \sin\theta, \sin\phi \sin\theta, \cos\theta) , \qquad (2.4)$$

with $\phi \in [0, 2\pi]$ and $\theta \in [0, \pi)$.

(b) Compute the pull-back metric (2.1) for S^n using local coordinates

$$\mathcal{Y}^a = \left(y^i, \sqrt{1 - y^i \,\delta_{ij} \, y^j}\right), \tag{2.5}$$

where $i = 1, \ldots, n$.

(c) Compute the pull-back metric (2.1) for $\mathcal{Y}: H^{p,n-p} \hookrightarrow \mathbb{R}^{n+1}$, where \mathbb{R}^{n+1} is endowed with the flat pseudo-Riemannian metric

$$\eta_{ab} = \operatorname{diag}(\underbrace{-1, \dots, -1}_{n-p}, \underbrace{+1, \dots, +1}_{p+1}),$$
(2.6)

and the embedding \mathcal{Y}^a satisfies $\mathcal{Y}^a \mathcal{Y}^b \eta_{ab} = 1$.

Hint: Use local coordinates on $H^{p,n-p}$ such that

$$\mathcal{Y}^a = \left(y^i, \sqrt{1 - y^i \eta_{ij} y^j}\right), \tag{2.7}$$

where i = 1, ..., n and η_{ij} denotes the first $n \times n$ block of η_{ab} in (2.6).

3 Consider the action for a field $\phi(x)$ in a d-dimensional spacetime with Minkowski metric $\eta_{\mu\nu} = (-1, +1, \dots, +1)$. The action is given in terms of the Lagrangian density by

$$S[\phi] = \int d^d x \, \mathcal{L}(\phi(x), \partial_\mu \phi(x)) \,. \tag{3.1}$$

(a) Use integration by parts and assume that you can neglect boundary terms, to show that the action is minimised $\delta S = 0$ for field configurations satisfying the Euler-Lagrange equations

$$\partial_{\mu} \left(\frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi)} \right) = \frac{\partial \mathcal{L}}{\partial \phi} \,. \tag{3.2}$$

(b) Consider the Klein-Gordon action for a massive scalar field ϕ in d dimensions with Minkowski metric

$$S = -\frac{1}{2} \int d^d x \left(\partial_\mu \phi \, \partial^\mu \phi + m^2 \phi^2 \right) \tag{3.3}$$

Use the action (3.3) to compute the Euler-Lagrange equations for the scalar field ϕ .

- (c) Show that the action (3.3) is invariant under translations and use Noether's Theorem to compute the stress-energy tensor associated with this translation invariance.
- (d) Compute the stress-energy tensor in the following alternative way. Consider a position-dependent translation

$$x^{\mu} \longrightarrow x^{\mu} + \epsilon^{\mu}(x)$$
. (3.4)

The variation of the action (3.3) takes the form

$$\delta S = \int d^d x \, T^{\mu\nu} \, \partial_\mu \epsilon_\nu \,. \tag{3.5}$$

Compute $T^{\mu\nu}$ from (3.5).

(e) Convince yourself that the variation of any translation-invariant action under a position-dependent translation (3.4) must take the form (3.5). Moreover, use (3.5) to argue that $T_{\mu\nu}$ must be conserved when the equations of motion hold.

Hint: Consider what happens when ϵ is constant and what it means for the action to be extremised.

(f) Compute the stress-energy tensor in the following alternative way. Minimally couple the Klein-Gordon action to a dynamical metric $g_{\mu\nu}$ and compute the stress-energy tensor via

$$T_{\mu\nu} = -\frac{2}{\sqrt{-g}} \left. \frac{\delta S}{\delta g^{\mu\nu}} \right|_{q=\eta} , \tag{3.6}$$

where $|_{g=\eta}$ denotes that we are evaluating with the metric g set to the Minkowski metric η .

- (g) Think about the translation-dependent shift (3.4) as a diffeomorphism to show that the stress-energy tensors computed in (3.5) and (3.6) must be the same for any action.
- 4 Consider the following 1-dimensional action

$$S = \frac{1}{2} \int_{\mathcal{P}} d\tau \left(e^{-1} \dot{X}^{\mu} \dot{X}^{\nu} \eta_{\mu\nu} - e \, m^2 \right) \,, \tag{4.1}$$

where $X^{\mu}(\tau)$, $e(\tau)$ are dynamical fields, $\dot{X}^{\mu} = \frac{dX^{\mu}}{d\tau}$, m is a constant and $\eta_{\mu\nu}$ is the Minkowski metric with $\mu = 0, \dots, n$.

(a) Given that $X^{\mu}(\tau)$ are scalar fields, how does e have to transform under reparameterisations

$$\tau \longrightarrow \tilde{\tau}(\tau)$$
, (4.2)

such that the action (4.1) is invariant?

(b) Show that the equations of motion for e imply

$$e^2 m^2 + \dot{X}^{\mu} \dot{X}^{\nu} \eta_{\mu\nu} = 0. \tag{4.3}$$

Plug (4.3) back into the action (4.1) to show that the action is equivalent to

$$S = -m \int_{\mathcal{P}} d\tau \sqrt{-\dot{X}^{\mu} \dot{X}^{\nu} \eta_{\mu\nu}} \,. \tag{4.4}$$

This is the world-line action of a point-particle in Minkowski space.

(c) Show that the action (4.4) is the same as

$$S = -m \int_{\mathcal{P}} d\tau \sqrt{-\det(X^* \eta)}, \qquad (4.5)$$

where $X^*\eta$ is the pull-back of the Minkowski metric η to the worldline of the particle, \mathcal{P} , embedded in Minkowski space: $X: \mathcal{P} \hookrightarrow \mathbb{R}^{1,n-1}$.

- (d) Compute the equation of motion for the action (4.4). Write the equation of motion in terms of the canonical momentum for X^{μ} and interpet this equation.
- (e) Consider a charged point-particle in Minkowski space coupled to an electromagnetic field

$$S = -m \int_{\mathcal{P}} d\tau \sqrt{-\det(X^*\eta)} + q \int_{\mathcal{P}} d\tau X^*A, \qquad (4.6)$$

where X^*A denotes the pull-back of the gauge potential A_{μ} to the worldline of the particle. Convince yourself that the action is explicitly given by

$$S = -m \int_{\mathcal{P}} d\tau \sqrt{-\frac{dX^{\mu}}{d\tau} \frac{dX^{\nu}}{d\tau} \eta_{\mu\nu}} + q \int_{\mathcal{P}} d\tau A_{\mu}(X(\tau)) \frac{dX^{\mu}}{d\tau}.$$
 (4.7)

Compute and interpret the equation of motion for the action (4.6).

Hint: Recall the definition of the electromagnetic field strength tensor $F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$.

(f) Consider a neutral point-particle moving in a curved space-time (M, g), i.e.

$$S = -m \int_{\mathcal{P}} d\tau \sqrt{-\det(X^*g)}, \qquad (4.8)$$

where X^*g is now the pull-back of the metric g to the world-line of the particle, \mathcal{P} , embedded in M via $X: \mathcal{P} \hookrightarrow M$. Show that the equation of motion of (4.8) is given by

$$\frac{d^2X^{\mu}}{ds^2} + \Gamma^{\mu}_{\nu\rho} \frac{dX^{\nu}}{ds} \frac{dX^{\rho}}{ds} = 0, \qquad (4.9)$$

where

$$ds = \sqrt{-\dot{X}^{\mu}\dot{X}^{\nu}g_{\mu\nu}}\,d\tau\,, (4.10)$$

and $\Gamma^{\mu}_{\nu\rho}$ are the Christoffel symbols given explicitly by

$$\Gamma^{\mu}_{\nu\rho} = \frac{1}{2} g^{\mu\sigma} \left(\partial_{\nu} g_{\rho\sigma} + \partial_{\rho} g_{\nu\sigma} - \partial_{\sigma} g_{\nu\rho} \right) . \tag{4.11}$$

Interpret this equation of motion.

(g) The action (4.8) can be generalised to a 1-dimensional string. This leads to the Nambu-Goto action:

$$S = -T \int_{\Sigma} d^2 \sigma \sqrt{-\det(X^*g)}, \qquad (4.12)$$

where T is the tension of the string, X^*g is now the pull-back of g to Σ , the worldsheet of the string, and $\sigma^{\alpha} = (\tau, \sigma)$ denote local coordinates on the worldsheet of the string. Write out (4.12) explicitly.