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1 Consider a coordinate change
xµ −→ x′µ . (1.1)

Recall that the components of tensors transform in a well-defined way under the coordinate
change (1.1). For example, the components of a (1, 1) tensor Tµν transform under (1.1) as

Tµν −→ T ′µν =
∂x′µ

∂xρ
∂xσ

∂x′ν
T ρσ . (1.2)

Similarly, the components of a (1, 1) tensor density T̃µν of weight w transforms under (1.1) as

T̃µν −→ T̃ ′µν = |J |w ∂x
′µ

∂xρ
∂xσ

∂x′ν
T ρσ , (1.3)

where J = det
(
∂xµ

∂x′ν

)
is the Jacobian of the coordinate change (1.1).

(a) Given a (2, 0) tensor Sµν , show that (detSµν)1/2 is a scalar density of weight 1.
(b) Consider now tensor and tensor density fields, i.e. Tµν(x), etc. The transformation (1.1)
can be expanded infinitesimally as

x′µ = xµ − εµ(x) + . . . . (1.4)

Show the following infinitesimal variations for a scalar fields Φ(x), Lorentzian metric gµν(x) and
its associated density (−detg(x))1/2:

δΦ = εµ∂µΦ ,

δgµν = εγ∂γgµν + (∂µε
γ)gγν + (∂νε

γ)gµγ = ∇µεν +∇νεµ ,
δ(−detg)1/2 = ∂γ(εγ(−detg)1/2) .

(1.5)

The second equality of the second line of (1.5) uses the torsion-free metric-compatible connection
∇µ.
Hint: A scalar field is defined via Φ′(x′) = Φ(x) and δΦ in (1.5) is defined as δΦ(x) ≡ Φ′(x)−Φ(x)
and similarly for the other fields in (1.5).

2 Consider a submanifold H of M defined by the embedding Y : H ↪→ M . A Riemannian
metric g on M then induces a pull-back metric h = Y∗g on H, explicitly given by

ds2 = dYa dYb gab , (2.1)

where a, b = 1, . . . ,dim M, and dYa denotes the exterior derivative of Ya on H. In local coordi-
nates σα, α = 1, . . . ,dimH, on H, these are explicitly given by

dYa =
∂Ya

∂σα
dσα . (2.2)

Consider the unit-radius n-sphere Sn ⊂ Rn+1 with the embedding

Y : Sn ↪→ Rn+1 , (2.3)
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and where Rn+1 is endowed with the flat Riemannian metric gab = δab, such that the embedding
satisfies Ya Yb δab = 1.
(a) Compute the pull-back metric (2.1) for S2 using spherical coordinates

Ya = (cosφ sin θ, sinφ sin θ, cos θ) , (2.4)

with φ ∈ [0, 2π] and θ ∈ [0, π).
(b) Compute the pull-back metric (2.1) for Sn using local coordinates

Ya =

(
yi,
√

1− yi δij yj
)
, (2.5)

where i = 1, . . . , n.
(c) Compute the pull-back metric (2.1) for Y : Hp,n−p ↪→ Rn+1, where Rn+1 is endowed with
the flat pseudo-Riemannian metric

ηab = diag(−1, . . . , −1︸ ︷︷ ︸
n−p

, +1, . . . , +1︸ ︷︷ ︸
p+1

) , (2.6)

and the embedding Ya satisfies Ya Yb ηab = 1.
Hint: Use local coordinates on Hp,n−p such that

Ya =

(
yi,
√

1− yi ηij yj
)
, (2.7)

where i = 1, . . . , n and ηij denotes the first n× n block of ηab in (2.6).

3 Consider the action for a field φ(x) in a d-dimensional spacetime with Minkowski metric
ηµν = (−1, +1, . . . , +1). The action is given in terms of the Lagrangian density by

S[φ] =

∫
ddxL(φ(x), ∂µφ(x)) . (3.1)

(a) Use integration by parts and assume that you can neglect boundary terms, to show that the
action is minimised δS = 0 for field configurations satisfying the Euler-Lagrange equations

∂µ

(
∂L

∂(∂µφ)

)
=
∂L
∂φ

. (3.2)

(b) Consider the Klein-Gordon action for a massive scalar field φ in d dimensions with Minkowski
metric

S = −1

2

∫
ddx

(
∂µφ∂

µφ+m2φ2
)

(3.3)

Use the action (3.3) to compute the Euler-Lagrange equations for the scalar field φ.
(c) Show that the action (3.3) is invariant under translations and use Noether’s Theorem to
compute the stress-energy tensor associated with this translation invariance.
(d) Compute the stress-energy tensor in the following alternative way. Consider a position-
dependent translation

xµ −→ xµ + εµ(x) . (3.4)

The variation of the action (3.3) takes the form

δS =

∫
ddxTµν ∂µεν . (3.5)
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Compute Tµν from (3.5).
(e) Convince yourself that the variation of any translation-invariant action under a position-
dependent translation (3.4) must take the form (3.5). Moreover, use (3.5) to argue that Tµν
must be conserved when the equations of motion hold.
Hint: Consider what happens when ε is constant and what it means for the action to be
extremised.
(f) Compute the stress-energy tensor in the following alternative way. Minimally couple the
Klein-Gordon action to a dynamical metric gµν and compute the stress-energy tensor via

Tµν = − 2√
−g

δS

δgµν

∣∣∣∣
g=η

, (3.6)

where |g=η denotes that we are evaluating with the metric g set to the Minkowski metric η.
(g) Think about the translation-dependent shift (3.4) as a diffeomorphism to show that the
stress-energy tensors computed in (3.5) and (3.6) must be the same for any action.

4 Consider the following 1-dimensional action

S =
1

2

∫
P
dτ
(
e−1ẊµẊνηµν − em2

)
, (4.1)

where Xµ(τ), e(τ) are dynamical fields, Ẋµ = dXµ

dτ , m is a constant and ηµν is the Minkowski
metric with µ = 0, . . . , n.
(a) Given that Xµ(τ) are scalar fields, how does e have to transform under reparameterisations

τ −→ τ̃(τ) , (4.2)

such that the action (4.1) is invariant?
(b) Show that the equations of motion for e imply

e2m2 + ẊµẊνηµν = 0 . (4.3)

Plug (4.3) back into the action (4.1) to show that the action is equivalent to

S = −m
∫
P
dτ

√
−ẊµẊνηµν . (4.4)

This is the world-line action of a point-particle in Minkowski space.
(c) Show that the action (4.4) is the same as

S = −m
∫
P
dτ
√
−det(X∗η) , (4.5)

where X∗η is the pull-back of the Minkowski metric η to the worldline of the particle, P,
embedded in Minkowski space: X : P ↪→ R1,n−1.
(d) Compute the equation of motion for the action (4.4). Write the equation of motion in terms
of the canonical momentum for Xµ and interpet this equation.
(e) Consider a charged point-particle in Minkowski space coupled to an electromagnetic field

S = −m
∫
P
dτ
√
−det(X∗η) + q

∫
P
dτ X∗A , (4.6)
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where X∗A denotes the pull-back of the gauge potential Aµ to the worldline of the particle.
Convince yourself that the action is explicitly given by

S = −m
∫
P
dτ

√
−dX

µ

dτ

dXν

dτ
ηµν + q

∫
P
dτ Aµ(X(τ))

dXµ

dτ
. (4.7)

Compute and interpret the equation of motion for the action (4.6).
Hint: Recall the definition of the electromagnetic field strength tensor Fµν = ∂µAν − ∂νAµ.
(f) Consider a neutral point-particle moving in a curved space-time (M, g), i.e.

S = −m
∫
P
dτ
√
−det(X∗g) , (4.8)

where X∗g is now the pull-back of the metric g to the world-line of the particle, P, embedded
in M via X : P ↪→M . Show that the equation of motion of (4.8) is given by

d2Xµ

ds2
+ Γµνρ

dXν

ds

dXρ

ds
= 0 , (4.9)

where

ds =

√
−ẊµẊνgµν dτ , (4.10)

and Γµνρ are the Christoffel symbols given explicitly by

Γµνρ =
1

2
gµσ (∂νgρσ + ∂ρgνσ − ∂σgνρ) . (4.11)

Interpret this equation of motion.
(g) The action (4.8) can be generalised to a 1-dimensional string. This leads to the Nambu-Goto
action:

S = −T
∫

Σ
d2σ
√
−det(X∗g) , (4.12)

where T is the tension of the string, X∗g is now the pull-back of g to Σ, the worldsheet of the
string, and σα = (τ, σ) denote local coordinates on the worldsheet of the string. Write out (4.12)
explicitly.

4 of 4


	
	
	
	

