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1 Consider a coordinate change
T (1.1)

Recall that the components of tensors transform in a well-defined way under the coordinate
change (1.1). For example, the components of a (1, 1) tensor 7%, transform under (1.1) as
Iz 0x°

u T
™ T”_c‘)xl)aaz”/ 7

(1.2)

Similarly, the components of a (1,1) tensor density T*, of weight w transforms under (1.1) as

ox'™ Ox°
oxr Oz~ 7’

where J = det (gfff,) is the Jacobian of the coordinate change (1.1).

(a) Given a (2,0) tensor Sy, show that (detSW)l/2 is a scalar density of weight 1.
(b) Consider now tensor and tensor density fields, i.e. T%,(z), etc. The transformation (1.1)
can be expanded infinitesimally as

T, — T, = |J|*

(1.3)

ot =gt — e (x)+ ... . (1.4)
Show the following infinitesimal variations for a scalar fields ®(x), Lorentzian metric g, (z) and
its associated density (—detg(z))/?:
0P = €0, @,
Oguv = € 0yguw + (0u€") gy + (0v€")guy = Vyuew + Voeu, (1.5)

§(—detg)/? = 9, (" (—detg)'/?).

The second equality of the second line of (1.5) uses the torsion-free metric-compatible connection
V-
Hint: A scalar field is defined via ®'(z') = ®(z) and 69 in (1.5) is defined as 6P (z) = ¢'(z)—P(x)
and similarly for the other fields in (1.5).

2 Consider a submanifold H of M defined by the embedding Y : H — M. A Riemannian
metric g on M then induces a pull-back metric h = Y*g on H, explicitly given by

ds? = dY*d)’ gup (2.1)
where a,b =1,...,dimM, and d)* denotes the exterior derivative of Y* on H. In local coordi-
nates c%, o =1,...,dim H, on H, these are explicitly given by

oy
dy* = 900 do® . (2.2)

Consider the unit-radius n-sphere S™ C R"*! with the embedding

V: 8" R (2.3)
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and where R"*! is endowed with the flat Riemannian metric gqp = ap, such that the embedding
satisfies Y Y 5 = 1.
(a) Compute the pull-back metric (2.1) for S? using spherical coordinates

Y* = (cos ¢ sinf, sin ¢ sinf, cosh) , (2.4)

with ¢ € [0, 2] and 6 € [0, 7).
(b) Compute the pull-back metric (2.1) for S™ using local coordinates

V= (yi, /1=y di yj) ; (2.5)
where i =1,...,n.

(c) Compute the pull-back metric (2.1) for Y : HP? P — R*"! where R"! is endowed with
the flat pseudo-Riemannian metric
ey = diag(—1, ..., —1, +1, ..., +1), (2.6)

g

n

p p+1

and the embedding Y* satisfies Y* Y° 145 = 1.
Hint: Use local coordinates on HP™ P such that

Yo = (yi, V1 —yini; yj) , (2.7)

where ¢ = 1,...,n and 7;; denotes the first n x n block of 14 in (2.6).

3 Consider the action for a field ¢(z) in a d-dimensional spacetime with Minkowski metric
N = (=1, +1, ..., +1). The action is given in terms of the Lagrangian density by

S[6] = / dl £(6(z), () (3.1)

(a) Use integration by parts and assume that you can neglect boundary terms, to show that the
action is minimised 65 = 0 for field configurations satisfying the Euler-Lagrange equations

(b) Consider the Klein-Gordon action for a massive scalar field ¢ in d dimensions with Minkowski

metric )
S = —2/dda: (0ugp 0" + m?¢?) (3.3)

Use the action (3.3) to compute the Euler-Lagrange equations for the scalar field ¢.
(c) Show that the action (3.3) is invariant under translations and use Noether’s Theorem to
compute the stress-energy tensor associated with this translation invariance.
(d) Compute the stress-energy tensor in the following alternative way. Consider a position-
dependent translation

zt — zt + e(x). (3.4)

The variation of the action (3.3) takes the form

68 = / A% TH O,e, . (3.5)
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Compute T from (3.5).

(e) Convince yourself that the variation of any translation-invariant action under a position-
dependent translation (3.4) must take the form (3.5). Moreover, use (3.5) to argue that T},
must be conserved when the equations of motion hold.

Hint: Consider what happens when e is constant and what it means for the action to be
extremised.

(f) Compute the stress-energy tensor in the following alternative way. Minimally couple the
Klein-Gordon action to a dynamical metric g, and compute the stress-energy tensor via

2 468
Y 9y
V=g 09" gy
where |4—, denotes that we are evaluating with the metric g set to the Minkowski metric 7).

(g) Think about the translation-dependent shift (3.4) as a diffeomorphism to show that the
stress-energy tensors computed in (3.5) and (3.6) must be the same for any action.

Ty = (3.6)

4 Consider the following 1-dimensional action
s== [ ar(e%ex 2 11
_57)7'(6 nw,—em), ()
where X#(7), e(r) are dynamical fields, X* = 4X" 'm is a constant and 7, is the Minkowski

dr
metric with 4 =0,...,n.
(a) Given that X#(7) are scalar fields, how does e have to transform under reparameterisations

T — 7(7), (4.2)

such that the action (4.1) is invariant?
(b) Show that the equations of motion for e imply

e*m? + X“X”T}W =0. (4.3)

Plug (4.3) back into the action (4.1) to show that the action is equivalent to

S=-m / dry/—X1Xvn,, . (4.4)
P

This is the world-line action of a point-particle in Minkowski space.
(c) Show that the action (4.4) is the same as

S = —m/ dr /—det(X*n), (4.5)
P

where X*n is the pull-back of the Minkowski metric 1 to the worldline of the particle, P,
embedded in Minkowski space: X : P «— RLn—1

(d) Compute the equation of motion for the action (4.4). Write the equation of motion in terms
of the canonical momentum for X* and interpet this equation.

(e) Consider a charged point-particle in Minkowski space coupled to an electromagnetic field

S = —m/ dr \/—det(X*n)—Fq/ dr X*A, (4.6)
P P
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where X*A denotes the pull-back of the gauge potential A, to the worldline of the particle.
Convince yourself that the action is explicitly given by

dXHdXv dX*
S=- dT \| ——————NMw dr A, (X —_— 4.7
m [ ar =S e+ [ dr XD (47)

Compute and interpret the equation of motion for the action (4.6).
Hint: Recall the definition of the electromagnetic field strength tensor F),, = 0,4, — d,A,.
(f) Consider a neutral point-particle moving in a curved space-time (M, g), i.e.

S = —m/ dr /—det(X*g), (4.8)
P

where X*g is now the pull-back of the metric ¢g to the world-line of the particle, P, embedded
in M via X : P — M. Show that the equation of motion of (4.8) is given by

A2 X+ dXV dXP
+TU =0,
ds? P ds ds

ds = \/—XrXVg,,dr, (4.10)

and T, are the Christoffel symbols given explicitly by

(4.9)

where

1
Fﬁp = 59“0 (augpa + 8pgua - aagup) . (4.11)

Interpret this equation of motion.
(g) The action (4.8) can be generalised to a 1-dimensional string. This leads to the Nambu-Goto

action:
S = —T/ d?o\/—det(X*g), (4.12)
>

where T is the tension of the string, X*¢ is now the pull-back of g to 3, the worldsheet of the
string, and 0® = (7, o) denote local coordinates on the worldsheet of the string. Write out (4.12)
explicitly.
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